Bridging Therapy: Peri-operative Antithrombotic Management

Dr. Amit Jain
Assistant Professor
Department of Anaesthesia and Intensive Care
Postgraduate Institute of Medical Education and Research
Chandigarh
Perioperative Antithrombotic treatment

Anticoagulants

Warfarin (VKA)
Unfractionated Heparin
LMWH

Antiplatelet drugs

Aspirin
ADP-receptor P2Y12 antagonists:
 Clopidogrel,
 Ticlopidine
 Prasugrel
Integrin αIIbβ3 (GPIIb/IIIa) receptor antagonists:
 Tirofiban, Eptifibatide,
 Abciximab
Indications for long-term antithrombotic treatment

Anticoagulants
- Mechanical heart valve
- Atrial fibrillation
- VTE
 (PAD, DCM, PPH)

Antiplatelet drugs
- Acute coronary syndrome
 1° prevention of MI
 2° prevention of MI
- Coronary stents
- Stroke
Surgery and ATT
OR
SAFE SURGERY

What is the Risk of peri-operative Thrombosis?
What is the Risk of peri-operative bleeding?

DEFICIENCIES IN CURRENT EVIDENCE

- From descriptive studies and clinical experience
- Does not account for:
 - the added risk of thrombosis during surgery
 - the rebound theory
 - the heterogeneity in patients’ characteristics
 - the post-operative clinical course
SAFE SURGERY: Choosing the Best Approach

Must Answer three basic questions

1 - Is interruption of antithrombotic therapy in the perioperative period needed?

2 - If antithrombotic therapy is interrupted, is bridging anticoagulation needed?

3 - Which is the best bridging strategy (bridging medication, timing, outpatient vs. inpatient)
SAFE SURGERY: Choosing the Best Approach

Must DO three basic ASSESSMENTS

1- Assessment of Thromboembolic Risk After Interruption of Antithrombotic Therapy

2- Assessment of Bleeding Risk Associated With Surgery or Other Invasive Procedures

3- How to Balance Thromboembolic Risk and Bleeding Risk
Thromboembolism Risk Category

<table>
<thead>
<tr>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star-Edwards</td>
<td>Bjork-Shiley</td>
<td>Medtronic-Hall</td>
</tr>
<tr>
<td>Omnicarbon</td>
<td>St. Jude</td>
<td>Carbomedics</td>
</tr>
</tbody>
</table>

Patient Characteristics

| Stroke or TIA < 6 mo | Any MV | Caged-ball or single leaflet tilting disc AV |

Suggested Management

<table>
<thead>
<tr>
<th>Therapeutic dose SC LMWH/IV UFH</th>
</tr>
</thead>
</table>

| A Fib, CVA, TIA, emboli, LV dysfxn, >75 y/o, HTN, DM |

<table>
<thead>
<tr>
<th>Bileaflet tilting disc AV and ≥ 2 stroke/TIA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Therapeutic dose SC LMWH/IV UFH or low dose SC LMWH</th>
</tr>
</thead>
</table>

| Bileaflet tilting disc AV No AF or any RF for Stroke |

| low dose SC LMWH or no bridge |

J.D. Douketis, Chest 2008; 133; 299S-339S
<table>
<thead>
<tr>
<th>Thromboembolism Risk Category</th>
<th>Patient Characteristics</th>
<th>Suggested Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Stroke or TIA < 3 mo CHADS$_2$ score 5/6 Rheumatic Valvular heart Disease</td>
<td>Therapeutic dose SC LMWH/IV UFH</td>
</tr>
<tr>
<td>Moderate</td>
<td>CHADS$_2$ score 3/4</td>
<td>Therapeutic dose SC LMWH/IV UFH or low dose SC LMWH</td>
</tr>
<tr>
<td>Low</td>
<td>CHADS$_2$ score 0/2 (and no Stroke/TIA)</td>
<td>low dose SC LMWH or no bridge</td>
</tr>
</tbody>
</table>

A Fib, CVA, TIA, emboli, LV dysfxn, >75 y/o, HTN, DM

J.D. Douketis, Chest 2008; 133; 299S-339S
Perioperative AC Rx in Patients With VTE

VTE Recurrence Risk

High

Moderate

Low

Patient Characteristics

Recent VTE (< 3 wks)
Severe thrombophilia (def Protein C/S/Antithrombin)
APL Ab or LA

VTE (3 to 12 months)
Recurrent VTE
Active Cancer

VTE > 12 mo ago or no RF

Suggested Management

Therapeutic dose SC LMWH/IV UFH

Therapeutic dose SC LMWH/IV UFH or low dose SC LMWH

low dose SC LMWH or no bridge

J.D. Douketis, Chest 2008; 133; 299S-339S
<table>
<thead>
<tr>
<th>Bleeding Risk</th>
<th>Type of Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Risk</td>
<td>CABG/Valve Replacement, IC or spinal Sx, Ao aneurysm repair, peripheral artery bypass, other major vascular Sx, Prostate/bladder, Reconstructive plastic Sx, major cancer sx, renal/prostatic Bx, polypectomy,</td>
</tr>
<tr>
<td>Moderate Risk</td>
<td>Major abd, thoracic, and orthopedic Cardiac pacemaker/defib implantation</td>
</tr>
<tr>
<td>Low Risk</td>
<td>Catarct, cutaneous, laparascopic choly/hernia repair, cardiac cath</td>
</tr>
</tbody>
</table>
Three important decisions taken

• Continue VKA throughout Sx/procedure (minor dental/dermatological procedures)

• Interruption of VKAs Before Surgery with/without Bridging therapy
 ✓ no RCT, 3 observational studies compare interrup vs. partial interrup
 ✓ Retrospect cohort study 608 pt. (9.5% MAJOR BLEEDING)

RECOMMENDATION

• Resumption of VKAs After Surgery
Rationale For Bridging For Patients on VKAs

Cross Coverage to Therapeutic INR

- Requiring AC but have not achieved Therapeutic INR
- Peri-procedural
- Already Rxed w chronic AC and now documented drop in INR

- mechanical heart valves
- A Fib w risk factors for emboli
- recent VTE (< 3 months)
- hypercoaguable states
BENEFITS Supporting Need for Bridge Therapy

• High daily risk estimate for thrombosis when patients remain unprotected for several days peri-procedure
• Subtherapeutic INR offers little or no protection
• Possible rebound hypercoaguable state, especially when warfarin reinitiated leading to thrombosis
• Bleeding complications can be controlled while CVA or PE may have lasting effect
• New drugs and new data offer increased ease of therapy
“BRIDGING” STRATEGY
ACCP Evidence-based Clinical Practice Guidelines, 2008

- Hold Coumadin
- Start full Dose LMWH
- Prophylactic Dose LMWH
- Resume full dose LMWH
- Resume Coumadin

Days pre-op

Day -7 - 5 - 4
√ INR

Days post-op

+1 +2 +3 +5
√ INR
√ CBC

J.D. Douketis, Chest 2008; 133; 299S-339S
Current Standard in Bridge Therapy

Prospective Randomized Controlled Trials

Expert Opinion/Consensus
Prospective Randomized Trials
(Bridge Therapy)

None available for major Sx, but some in progress and others in the planning phase
Only few observational studies +nt
Expert Opinion on Bridge Therapy

- British Society of Hematology
- American College of Chest Physicians (ACCP)
- Kearon and Hirsh article; NEJM, May, 1997
- Pregnancy and Prosthetic Valve Clinical Consensus (PPCR)
- Douketis 2003
- ACCP Evidence-based Clinical Practice Guidelines, 2008
INR Pre-Op Day 3
Stop Warfarin +/- Vit K

UFH when INR < 2

Normal INR Range 1-1.3

therapeutic INR range

British Society of Haematology
INR Pre-Op Day

Stop Warfarin +/- Vit K

Low or full dose UFH or LMWH when INR < 2

American College of Chest Physicians
Limitations of Kearon and Hirsh Recommendations

- Discounts rebound phenomena
- Estimate 100-fold ↑ in VTE risk but no ↑ in ATE risk [versus Wahl’s review (5 of 493 patients had ATE, 4 died)]
- Low estimate ATE risk off warfarin (4.5%/year A fib, 8%/year mechanical valve)
- Estimate heparin bleeding risk of 3% per 2 days
- Recommends SC vitamin K, does not utilize LMWH
- Does not focus on patients’ characteristics (type of valve, risk factors for ATE in A Fib)
- SC (or no) heparin in A fib and mechanical valves??!!
• Better risk stratification of:
 - risk of post-procedural bleed
 - risk of peri procedure thrombotic complications

• Advocates normal or near normal INR at the time of surgery (earlier withdrawal of warfarin)

• Includes practical algorithms that guide perioperative management of AC
Regardless of thromboembolism risk category, patient’s characteristics take precedent!

- A Fib
- CVA
- TIA
- arterial emboli
- LV dysfxn
- >75 y/o
- HTN
- DM

Bridging strongly recommended

J.D. Douketis, Thrombosis Research; 108 (2003) 3-13
“BRIDGING” STRATEGY
ACCP Evidence-based Clinical Practice Guidelines, 2008

Day -7 -5 - 4
Hold Coumadin
√ INR

Start full Dose LMWH

Surgery
√ INR

Prophylactic Dose LMWH

Resume full dose LMWH
√ INR
√ CBC

Resume Coumadin

Days pre-op
Days post-op

J.D. Douketis, Chest 2008; 133; 299S-339S
In patients undergoing a minor surgical or other invasive procedure and who are receiving bridging anticoagulation with therapeutic-dose LMWH
Resume this regimen approximately 24 h after the procedure when there is adequate hemostasis over a shorter (eg, < 12 h) time interval

In patients undergoing major surgery or a high bleeding risk surgery/procedure and for whom postoperative therapeutic-dose LMWH/UFH is planned
Delay the initiation of therapeutic-dose LMWH/UFH for 48 to 72 h after surgery when hemostasis is secured OR administer low-dose LMWH/UFH after surgery when hemostasis is secured, or completely avoid LMWH or UFH after surgery over the administration of therapeutic-dose LMWH/UFH in close proximity to surgery
In patients who are receiving bridging anticoagulation with LMWH

The routine use of anti-factor Xa levels to monitor the anticoagulant effect of LMWHs not required
Emergency Surgery in the Anticoagulated Patient

- D/C all anticoagulants
- If INR >2.5: Vit K +/- (plasma or factor concentrate)
- Prepare PRBC, platelet, and FFP
- Consider PRBC transfusion to “augment hematocrit” especially in pts with cardiac disease
- Watch for volume overload, dilutional thrombocytopenia and coagulaopathy
- Restart AC postop. as early as possible or start Bridging therapy
Newer anticoagulants and Bridging potential

Fondaparinux (Arixtra)

The role of fondaparinux in perioperative bridge therapy has not been established, and there are some important limitations to its use as a routine bridging agent

AC guidelines provide minimal direction on the periop use of fondaparinux

Fondaparinux's extended half-life of 17-21 h complicates its use as a periop bridging therapy.

The ideal time for discontinuation before surgery not known

Neuraxial blockade in patients with planned fondaparinux thromboproph may not be feasible in clinical practice.
Coronary stents: Perioperative hazards

PCI: Restenosis or Stent thrombosis

- Balloon angioplasty
 - Gruentzig, 1997
 - 15-60%
- Bare metal stents
 - 1986
 - 10-30%
- Drug eluting stents
 - 2003
 - 5-10%
Drug eluting stent

- Platform (stent)
- Carrier (Polymer)
- Drug to prevent neointimal hyperplasia
Drug eluting stents: Types

- Sirolimus DES
- Paclitaxel
- Zotarolimus
- Everolimus
- Biolimus

Stainless steel, tubular
Stainless steel, multiple rings
Chrome-Cobalt, tubular
Chrome-Cobalt, multiple rings
Antiplatelet drugs for Coronary stents

- **Aspirin**
 - Continue indefinitely

- **Integrin αIIbβ3 (GPIIb/IIIa) receptor antagonists:**
 - Tirofiban,
 - Eptifibatide,
 - Abciximab

- **ADP-receptor P2Y12 antagonists:**
 - Clopidogrel
 - Ticlopidine
 - Prasugrel

 - (Bare metal stent ≥6 wk)
 - (DES ≥ 12 mo)
Risk factors for stent thrombosis

<table>
<thead>
<tr>
<th>Procedure-related</th>
<th>Patient and lesion-related</th>
<th>Stent-related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stent malposition</td>
<td>ACS</td>
<td>Delayed endothelisation</td>
</tr>
<tr>
<td>Stent underexpansion</td>
<td>Premature STOP APAs</td>
<td>Type of drug (DES)</td>
</tr>
<tr>
<td>Stent length</td>
<td>Drug resistance</td>
<td>Kinetic of drug release</td>
</tr>
<tr>
<td>Slow CBF</td>
<td>Low LVEF</td>
<td>Design</td>
</tr>
<tr>
<td>Positive remodeling</td>
<td>DM</td>
<td>Polymer vs. non polymer</td>
</tr>
<tr>
<td>Residual arterial dissection</td>
<td>Age>75</td>
<td>Hypersensitive to polymer (Kounis syndrome)</td>
</tr>
<tr>
<td></td>
<td>Bifurcated lesion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long lesion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complex lesions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small vessels</td>
<td></td>
</tr>
</tbody>
</table>
Clinical risk score for Stent thrombosis

(Baran et al)

<table>
<thead>
<tr>
<th>Clinical Factors</th>
<th>Hazard Ratio</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clopidogrel stop<6 mo</td>
<td>5.28</td>
<td>5</td>
</tr>
<tr>
<td>DM (Insulin)</td>
<td>4.74</td>
<td>5</td>
</tr>
<tr>
<td>Left main stenting</td>
<td>2.73</td>
<td>3</td>
</tr>
<tr>
<td>Smoking</td>
<td>2.63</td>
<td>3</td>
</tr>
<tr>
<td>Lesion length>28 mm</td>
<td>2.35</td>
<td>2</td>
</tr>
<tr>
<td>Multiple stents</td>
<td>2.25</td>
<td>2</td>
</tr>
<tr>
<td>Mod to Severe Cal.</td>
<td>2.25</td>
<td>2</td>
</tr>
<tr>
<td>Ref vessel Dia.< 3mm</td>
<td>1.72</td>
<td>2</td>
</tr>
<tr>
<td>Total score</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Risk Stratification

<table>
<thead>
<tr>
<th>Risk Stratification</th>
<th>ST rate%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0-6 (0.8)</td>
</tr>
<tr>
<td>Moderate</td>
<td>7-13 (3.6)</td>
</tr>
<tr>
<td>High</td>
<td>14-24 (12.6)</td>
</tr>
</tbody>
</table>
Proposed stratification of hemorrhagic and thrombotic risk

<table>
<thead>
<tr>
<th>Minor</th>
<th>Moderate</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhagic risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfusion not req: Minor plastic/GS/OS Biopsies, Dental, Eye (Ant. chamber)</td>
<td>Transfusion usually needed: Cardiac surgery; major OS/visceral/ENT/urology or reconstructive sx</td>
<td>Possible bleeding in an enclosed space; cranial/spinal sx; sx of the posterior segment of eye; TURP</td>
</tr>
<tr>
<td>Thrombotic risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>6 mo after AMI or CABG, percut. coronary angiography or BMS, coronary surgery; and CVS (>12 mo if high-risk patient or associated complications)</td>
<td>>12 mo after DES; 6–36 wks after AMI or CABG; BMS; and CVS (6–12 mo if high-risk patient or associated complications)</td>
<td><12 mo after DES; <6 wks after AMI; CABG; BMS; and CVS (<6 mo if high-risk patient or associated complications)</td>
</tr>
</tbody>
</table>
Relative contribution of key hazards associated with major adverse cardiac events in patients with Coronary stents
Periop management of APA in DES

DES < 12 Mo

Elective Sx. Can be deferred?

Yes

Postpone Sx ≥ 12 mo after DES

No

Multidisciplinary Consultation:
Anesthetist+Surgeon+Cardiologist+Hematologist

DES ≥12 Mo

Replace Aspirin ≥200mg by ≤100mg
Maintain Aspirin ≤100mg
Stop Clopidogrel ≥5 d + substitute Aspirin ≤100mg
High risk of bleeding: stop aspirin 2-5 d

Llau et al. Vascular Health and Risk Management 2010
Multidisciplinary Consultation: Anesthetist+Surgeon+Cardiologist+Hematologist

Bleeding risk

High

- DES stent thrombosis risk score (Baran et al)

Moderate

- Time elapsed from DES implantation
 - DES ≥ 6 mo
 - Stop Clopidogrel 5d
 - Maintain Aspirin
 - DES ≤ 6 mo
 - Maintain dual APAs

Low

- Surgery

• Replace aspirin >200 mg by ≤100 mg
• Maintain Aspirin dose ≤100 mg
• Stop Clopidogrel 5d
 - vs
• Stop Clopidogrel ≥ 5d ± bridge therapy
• If necessary stop aspirin 2–5d ± bridge therapy
Role of bridging treatment in Coronary stents

- Unmet need
- UFH: no antiplatelet activity
- LMWH: no antiplatelet activity
- Tirofiban infusion +/- heparin (t1/2 life 2hr, BT return to normal 4 hr after stopping with 50% recovery of platelet funct)

(Saonitto et al. Stop Clopidogrel 5d before Sx,
Start Tirofiban 4d before Sx.
Stop inf 4 hr before Sx and restart 2 hr after Sx.
Reload patient with Clopidogrel on D1
Continue Aspirin throughout)

Godet et al., Broad et al.
New APAs

- Cangrelor (t1/2 life 3-5 min, full recovery of platelet activity in 60 min)
 Phase III trials
- Ticagrelor (reversible, rapid onset, and short half-life) phases of pre-marketing testing
Use of thromboelastography as an adjunct to bridging therapy

- MA of conventional thromboelastography (TEGw) is not sensitive enough to detect the presence of thienopyridines or salicylates.
- May be used to monitor the antiplatelet effects of GPIIb/IIIa inhibitors.
- Routine use of PFAs to monitor Asp/Clopidogrel ✗
Modified TEG

- Uses reptilase (a proteolytic enzyme from snake venom) and Factor XIII to produce a cross-linked clot through which platelets can interact.
- Produces MA that is sensitive to the presence of thienopyridines and salicylates.
- Early results suggest good correlation with gold standard laboratory-based tests, such as optical platelet aggregometry.
- Could be useful in monitoring the antiplatelet effects of cangrelor during bridging therapy, allowing its rate of infusion to be titrated against a pre-determined mTEG MA during the perioperative period.
Future stents

- Coated with APA
- Enhanced drug-eluting profile
- Bio-resorbable stents made from Mg alloys or poly-L-lactic acid
Many Thanks